Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos

Author:

Kirillov Sergej, ,Zlobin Alexander,Klinshov Vladimir, ,

Abstract

The purpose of this work is to study the collective dynamics of a neural network consisting of excitatory and inhibitory populations. The method of reducing the network dynamics to new generation neural mass models is used, and a bifurcation analysis of the model is carried out. As a result the conditions and mechanisms for the emergence of various modes of network collective activity are described, including collective oscillations, multistability of various types, and chaotic collective dynamics. Conclusion. The low-dimensional reduced model is an effective tool for studying the essential patterns of collective dynamics in large-scale neural networks. At the same time, the analysis also allows us to elicit more subtle effects, such as the emergence of synchrony clusters in the network and the shifting effect for the boundaries of the existence of dynamical modes.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collective dynamics and shot-noise-induced switching in a two-population neural network;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3