The flexural strength of anisotropic composite plates with free edges

Author:

Akopyan Ashot G.ORCID,

Abstract

Modern technology shows increased demands on the strength properties of machines, their parts, as well as various structures, reducing their weight, volume and size, which leads to the need to use anisotropic composite materials. Finding criteria to determine the ultimate strength characteristics of structural elements, engineering structures is one of the urgent problems of solid mechanics. Strength problems in structures are often reduced to finding out the nature of the local stress state at the vertices of the joints of the constituent parts. The solution of this urgent problem for composite anisotropic plates can be found in this article, where the author continues the research in this area, extending them to the bending of anisotropic composite plates. The aim of the work is to study the limit stress state of anisotropic composite plates in the framework of the classical theory of plate bending. The outer edges of the plate are considered to be free. Using the classical theory of anisotropic plate bending in the space of physical and geometric parameters, the hypersurface equations determining the low-stress zones for the edge of the contact surface of a composite cylindrical orthotropic plate are obtained. Modern technological processes of welding, surfacing, soldering and bonding allow to produce structural elements of monolithic interconnected dissimilar anisotropic materials. The combination of different materials with qualities corresponding to certain operating conditions opens up great opportunities to improve the technical and economic characteristics of machines, equipment and structures. It can contribute to a significant increase in their reliability, durability, reduce the cost of production and operation. On this basis, the solution proposed in this work can be useful to increase the strength of composite materials.

Publisher

Saratov State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3