Abstract
Let w(x) be the Laguerre weight function, 1 ≤ p < ∞, and Lpw be the space of functions f, p-th power of which is integrable with the weight function w(x) on the non-negative axis. For a given positive integer r, let denote by WrLpw the Sobolev space, which consists of r−1 times continuously differentiable functions f, for which the (r−1)-st derivative is absolutely continuous on an arbitrary segment [a, b] of non-negative axis, and the r-th derivative belongs to the space Lpw. In the case when p = 2 we introduce in the space WrL2w an inner product of Sobolev-type, which makes it a Hilbert space. Further, by lαr,n(x), where n = r, r + 1, ..., we denote the polynomials generated by the classical Laguerre polynomials. These polynomials together with functions lαr,n(x) = xn / n! , where n = 0, 1, r − 1, form a complete and orthonormal system in the space WrL2w. In this paper, the problem of uniform convergence on any segment [0,A] of the Fourier series by this system of polynomials to functions from the Sobolev space WrLpw is considered. Earlier, uniform convergence was established for the case p = 2. In this paper, it is proved that uniform convergence of the Fourier series takes place for p > 2 and does not occur for 1 ≤ p < 2. The proof of convergence is based on the fact that WrLpw ⊂ WrL2w for p > 2. The divergence of the Fourier series by the example of the function ecx using the asymptotic behavior of the Laguerre polynomials is established.
Subject
Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献