A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-Air Engagement
-
Published:2016-12-23
Issue:1
Volume:67
Page:108
-
ISSN:0976-464X
-
Container-title:Defence Science Journal
-
language:
-
Short-container-title:Def. Sc. Jl.
Author:
Manickavasagam M,Sarkar A.K.,Vaithiyanathan V
Abstract
In this study, a singular perturbation based technique is used for synthesis and analysis of a near optimal midcourse guidance law for realistic air-to-air engagement. After designing the proposed midcourse guidance law using three dimensional point mass formulation it has been validated through detailed realistic six degrees of freedom simulation. During terminal phase only proportional navigation guidance have been used. The calculation of optimal altitude in present guidance law has been carried out using Newton’s method, which needs generally one iteration for convergence and suitable for real-time implementation. Extended Kalman filter based estimator has been used for obtaining evader kinetic information from both radar and seeker noisy measurements available during midcourse and terminal guidance. The data link look angle constraint due to hardware limitation which affects the performance of midcourse guidance has also been incorporated in guidance law design. Robustness of complete simulation has been carried out through Monte Carlo studies. Extension of launch boundary due to singular perturbation over proportional navigation guidance at a given altitude for a typical engagement has also been reported.<br />
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献