Studies of Jet A1 Fuel Atomization Through Non Circular Orifices

Author:

Pooja V. VaniORCID,Kumar RajivORCID

Abstract

The performance of the liquid rocket engine depends on the atomization behavior of the fluid being injected into the combustion chamber. Generally, a plain injector with a circular orifice has been used in the injector, but it has the disadvantage of having a low spray cone angle. The breakup length, mean droplet diameter, and Sauter mean diameter is also higher. Thus, to overcome these drawbacks, non-circular orifices have been utilized in the present study. The shapes used for non-circular orifices are semi-circular and plus. The results obtained with the non-circular orifice is compared with the circular orifices of the same area ratio. The working fluid used for the studies is Jet A1 fuel. Studies were also conducted with different L/D ratios by choosing an effective orifice length to reduce the upstream losses. The axis-switching phenomena were observed with the semi-circular as well as with the plus jets. The mean droplet size of the circular jets was more prominent compared to non-circular jets, and the Sauter mean diameter of non-circular jets droplets was smaller than that of the circular jet droplet. The spray cone angle has increased by 290% for plus jets and 30% for semi-circular jets compared to circular jets.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3