Analysis Design and Simulation of an Axially partitioned Dielectric loaded Bi frequency MILO

Author:

Kumar ArjunORCID,Tripathi PrabhakarORCID,Dwivedi Smrity,Jain P. K.

Abstract

In this paper, a bi-frequency magnetically insulated line oscillator (MILO) was proposed and designed. The bi-frequency MILO proposed has two axially partitioned slow-wave interaction structures (SWS) and the second SWS is dielectric-loaded to create the frequency shift in the resonant frequency. The conventional MILO device design methodology was followed along with two SWSs separated by a segregation cavity. The dispersion relation of the dielectric-loaded SWS was calculated using an equivalent circuit approach. Furthermore, the cold analysis was carried out to find the energy stored in the different SWSs to validate the device oscillation frequency. The beam wave interaction behaviour and device RF output performance were investigated through 3D PIC (Particle-in-cell) simulation for typical diode voltage of 550 kV, and current 48 kA, respectively. Simulation results illustrate that the proposed MILO generates RF peak power of ~3.5 GW at frequencies 3.62 GHz and 3.72 GHz. The conversion efficiency of the device was ~13.25%.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3