Multi mode Resonator based Concurrent Triple band Band pass Filter with Six Transmission Zeros for Defence Intelligent Transportation Systems Application

Author:

Tripathi ShiveshORCID,Mohapatra B.ORCID,Tiwari Prabhaker,Tripathi V.S.

Abstract

A compact and highly selective triple-band bandpass filter (BPF) is designed and presented in this paper. Proposed filter offers low insertion loss, and passband characteristics is achieved by using two coupled MMR multi-mode resonators (MMR1 and MMR2) and an inverted T and circular shape MMRs. The filter operates at frequency 2.43 GHz (Vehicular Communication), 5.91 GHz (ITS band), and 8.86 GHz (satellite communication band). The simulation and measurement results show a minimum insertion loss of 1.6 dB, 0.73 dB, and 2.8 dB for triple-band BPF. The return loss is found to be greater than 13.06 dB, 28.6 dB, and 21.55 dB. It is noted that measurement results are in accordance with the result of electromagnetic simulation. Desired triple-band multi-mode resonators (MMRs) filter characteristics are achieved with six transmission zeroes (TZs). The filter comprises of MMRs which provide small size and control over the spurious frequency. By using a parallel-coupled microstrip line, the first and third passbands are realised. Whereas by using an end-coupled microstrip line, the second passband is recognised. At the input and output ports, the resonator coupling technique is used. By using the anti-parallel microstrip line arrangement, the transmission zero is acquired. The dimensions of the designed filter are 25×16 mm 2.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3