Deep Learning based Cryptanalysis of Stream Ciphers

Author:

Mishra GirishORCID,Gupta IndivarORCID,Murthy S V S S N V G KrishnaORCID,Pal S KORCID

Abstract

Conventional cryptanalysis techniques necessitate an extensive analysis of non-linear functions defining the relationship of plain data, key, and corresponding cipher data. These functions have very high degree terms and make cryptanalysis work extremely difficult. The advent of deep learning algorithms along with the better and efficient computing resources has brought new opportunities to analyze cipher data in its raw form. The basic principle of designing a cipher is to introduce randomness into it, which means the absence of any patterns in cipher data. Due to this fact, the analysis of cipher data in its raw form becomes essential. Deep learning algorithms are different from conventional machine learning algorithms as the former directly work on raw data without any formal requirement of feature selection or feature extraction steps. With these facts and the assumption of the suitability of employing deep learning algorithms for cipher data, authors introduced a deep learning based method for finding biases in stream ciphers in the black-box analysis model. The proposed method has the objective to predict the occurrence of an output bit/byte at a specific location in the stream cipher generated keystream. The authors validate their method on stream cipher RC4 and its improved variant RC4A and discuss the results in detail. Further, the authors apply the method on two more stream ciphers namely Trivium and TRIAD. The proposed method can find bias in RC4 and shows the absence of this bias in its improved variant and other two ciphers. Focusing on RC4, the authors present a comparative analysis with some existing methods in terms of approach and observations and showed that their process is more straightforward and less complicated than the existing ones.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive Particle Swarm Optimization to Solve Modern Security System;2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS);2023-11-23

2. Neural Distinguishers on $$\texttt {TinyJAMBU-128}$$ and $$\texttt {GIFT-64}$$;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3