A New Multi Echelon Repair Network Model with Multiple Upstream Locations for Level of Repair Analysis Problem

Author:

Bıçakcı İsmailORCID,İç Yusuf TanselORCID,Karasakal EsraORCID,Dengiz BernaORCID

Abstract

Level of repair analysis (LORA) determines (1) the best decision during a malfunction of each product component; (2) the location in the repair network to perform the decision and (3) the quantity of required resources in each facility. Capital goods have long life cycles and their total life cycle costs are extremely high. LORA, which can be done repeatedly during the life cycle of the product, both at design and product support phase, plays an important role in minimising the total life cycle costs of capital goods. It is mostly applied to systems that operate in different geographical areas and deployed in different regions, which include different subsystems with special technology and expertise, and have a complex product structure. In this study, we propose a new mathematical model to the LORA problem, which is more comprehensive and flexible than the other pure LORA models in the literature. The proposed model uses the multiple upstream approach that allows the transfer of the components from a location in the lower echelon to the predefined locations in the upper echelon and determines the material movement paths between each facility, defining the facilities’ locations in the repair network. The performance of the proposed model is tested on benchmark instances and the results are compared with the single upstream model. Computational experiments show that the proposed model is more effective than the single upstream model and reduces the total life cycle costs by 4.85% on average, which is an enormous cost saving when total life cycle costs of capital goods are considered.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3