Deep Convolutional Neural Network based Ship Images Classification

Author:

Mishra Narendra KumarORCID,Kumar AshokORCID,Choudhury KishorORCID

Abstract

Ships are an integral part of maritime traffic where they play both militaries as well as non-combatant roles. This vast maritime traffic needs to be managed and monitored by identifying and recognising vessels to ensure the maritime safety and security. As an approach to find an automated and efficient solution, a deep learning model exploiting convolutional neural network (CNN) as a basic building block, has been proposed in this paper. CNN has been predominantly used in image recognition due to its automatic high-level features extraction capabilities and exceptional performance. We have used transfer learning approach using pre-trained CNNs based on VGG16 architecture to develop an algorithm that performs the different ship types classification. This paper adopts data augmentation and fine-tuning to further improve and optimize the baseline VGG16 model. The proposed model attains an average classification accuracy of 97.08% compared to the average classification accuracy of 88.54% obtained from the baseline model.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3