Comparative Performance of New Surface Roughness Element and Pin fin in Converging Channel for Gas Turbine Application

Author:

Gaur RiteshORCID,Ganesan S.,Prasad B.V.S.S.S.

Abstract

Thermal performance of a novel surface roughness element, named as Double 45 Dimple (D45D), is compared with pin-fin element in a converging channel with rectangular cross section and presented. The Surface Roughness Element (SRE) is derived by combining protrusion & dimple in a particular fashion such that area available for transfer of heat increases. The objective of this study is to demonstrate the applicability of D45D element channel for trailing edge channel of a typical nozzle guide vane where typically pin-fin element is used. New cooling configuration of Nozzle Guide Vane (NGV) with D45D element is also proposed. All thermal and flow related results are derived using validated CFD approach with EARSM turbulence model for a typical value of Reynolds number. From this investigation, it is found that D45D element provides remarkable improvement in the averaged as well as heat transfer in local region for the corresponding surface which makes it a candidate for trailing edge channel cooling application.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3