Hematite Suspension based Absorbent Pad Inclined Slider Influenced by Slip and Squeeze Velocity with Altering Film Ratio

Author:

Ram ParasORCID,Kumar AnilORCID

Abstract

The effects of various entities like slip and squeeze velocities, inlet-outlet film ratio, and the material parameter have been fairly explored in a hematite suspension based absorbent (porous) pad inclined slider. Mathematical expressions for pressure, load capacity (lifting force), friction, friction coefficient, and position of centre of pressure (COP) in terms of the above physical parameters have been acquired. Jenkins model has been employed as a mathematical set of governing equations. It has been found that an increase in the squeeze velocity has enhanced the load capacity and diminished the friction coefficient whereas the escalating values of slip velocity and material properties have reversed the trends. Besides, the optimum value of the inlet-outlet film ratio for maximum load capacity has reduced with a rise in the squeeze velocity. Improvement in material parameters shifted the position of COP slightly towards the inlet while an enhancement in the squeeze velocity and film ratio shifted the same slightly towards the outlet. The results acquired in the present paper will be helpful in designing and modifying the various types of fluid dynamic slider bearings.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3