DTTA - Distributed, Time-division Multiple Access based Task Allocation Framework for Swarm Robots

Author:

Shenoy Meetha V.,Anupama K.R.

Abstract

Swarm robotic systems, unlike traditional multi-robotic systems, deploy number of cost effective robots which can co-operate, aggregate to form patterns/formations and accomplish missions beyond the capabilities of individual robot. In the event of fire, mine collapse or disasters like earthquake, swarm of robots can enter the area, conduct rescue operations, collect images and convey locations of interest to the rescue team and enable them to plan their approach in advance. Task allocation among members of the swarm is a critical and challenging problem to be addressed. DTTA- a distributed, Time-division multiple access (TDMA) based task allocation framework is proposed for swarm of robots which can be utilised to solve any of the 8 different types of task allocation problem identified by Gerkey and Mataric´. DTTA is reactive and supports task migration via extended task assignments to complete the mission in case of failure of the assigned robot to complete the task. DTTA can be utilised for any kind of robot in land or for co-operative systems comprising of land robots and air-borne drones. Dependencies with other layers of the protocol stack were identified and a quantitative analysis of communication and computational complexity is provided. To our knowledge this is the first work to be reported on task allocation for clustered scalable networks suitable for handling all 8 types of multi-robot task allocation problem. Effectiveness and feasibility of deploying DTTA in real world scenarios is demonstrated by testing the framework for two diverse application scenarios.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control System of Fire Rescue Robot for High-Rise Building Design;Advances in Civil Engineering;2022-08-10

2. A Flexible Framework for Diverse Multi-Robot Task Allocation Scenarios Including Multi-Tasking;ACM Transactions on Autonomous and Adaptive Systems;2021-03-31

3. Review on state-of-the-art dynamic task allocation strategies for multiple-robot systems;Industrial Robot: the international journal of robotics research and application;2020-09-21

4. An Adaptive Task Scheduling Method for Networked UAV Combat Cloud System Based on Virtual Machine and Task Migration;Mathematical Problems in Engineering;2020-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3