Solution of Large Sparse System of Linear Equations over GF(2) on a Multi Node Multi GPU Platform

Author:

Rawal ShrutiORCID,Gupta IndivarORCID

Abstract

We provide an efficient multi-node, multi-GPU implementation of the Block Wiedemann Algorithm (BWA)to find the solution of a large sparse system of linear equations over GF(2). One of the important applications ofsolving such systems arises in most integer factorization algorithms like Number Field Sieve. In this paper, wedescribe how hybrid parallelization can be adapted to speed up the most time-consuming sequence generation stage of BWA. This stage involves generating a sequence of matrix-matrix products and matrix transpose-matrix products where the matrices are very large, highly sparse, and have entries over GF(2). We describe a GPU-accelerated parallel method for the computation of these matrix-matrix products using techniques like row-wise parallel distribution of the first matrix over multi-node multi-GPU platform using MPI and CUDA and word-wise XORing of rows of the second matrix. We also describe the hybrid parallelization of matrix transpose-matrix product computation, where we divide both the matrices row-wise into equal-sized blocks using MPI. Then after a GPU-accelerated matrix transpose-matrix product generation, we combine all those blocks using MPI_BXOR operation in MPI_Reduce to obtain the result. The performance of hybrid parallelization of the sequence generation step on a hybrid cluster using multiple GPUs has been compared with parallelization on only multiple MPI processors. We have used this hybrid parallel sequence generation tool for the benchmarking of an HPC cluster. Detailed timings of the complete solution of number field sieve matrices of RSA-130, RSA-140, and RSA-170 are also compared in this paper using up to 4 NVidia V100 GPUs of a DGX station. We got a speedup of 2.8 after parallelization on 4 V100 GPUs compared to that over 1 GPU.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3