Comparative Study of Structural and Mechanical Properties of as Deposited and Shock Wave Exposed NiW Nano Structured Thin Films

Author:

Nivetha GORCID,Kannan R.ORCID,Selvambikai MORCID,Vasantharaj CORCID,Praveen Kumar BORCID,Prem Kumar P. SORCID,Sundararaj KORCID

Abstract

The current work describes the effect of shock wave exposure on electroplated NiW thin films. NiW thin films were deposited through electrodeposition process by varying the bath temperatures (35°C and 70°C) at constant current density of 1A/dm2. The deposited NiW thin films were exposed to shock waves with varying Mach numbers of 1.13 and 2.33 using an in-house shock wave tube facility. The as-deposited and shock wave-exposed NiW thin films were characterized by XRD, FESEM, EDS, and EIS to reveal its structural and mechanical properties. The XRD results disclose the stable cubic structural phase of as deposited and shock wave exposed NiW thin films with average crystallite size varying between 5 nm to 17nm. The elemental composition of as-deposited and shock-wave exposed films are similar as confirmed in the EDS analysis. This henceforth represents the stability of nanostructured NiW film in terms of compositional and structural aspect. Morphological analysis through FESEM shows that the exposed thin film is defect free due to the impact of shock waves. Furthermore, corrosion resistance is observed to enhance ten times in shock-wave exposed thin film than as-deposited thin film for higher mach number (Pressure ~63 bar). Similarly, corrosion resistance for low mach number (pressure ~13 bar) increases by three times of as deposited film according to the EIS analysis. Therefore, the structural, morphological and corrosion properties were enhanced upon surface treatment by shock wave exposure. NiW thin films with enhanced mechanical properties such as low corrosion rate, high corrosion resistance is used in various industrial applications like defense applications, aircraft, and marine applications.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3