Molecularly Imprinted Polymer Based Potentiometric Sensor for the Selective and Sensitive Detection of Nerve Agent Simulant Parathion

Author:

Yağmuroğlu OzanORCID

Abstract

In this study, a potentiometric sensor was developed for the analysis of the parahtion which is a nerve agent simulant and pesticide. A molecularly imprinted polymer was used as the recognition layer in the electrode used in the potentiometric sensor. Parathion is also used as both an organophosphorus pesticide and a nerve agent simulant. For this reason, analysis methods to be developed for parathion are very important. The most important advantages brought by MIP-based sensor systems are; fast analysis, sensitive analysis, and the ability to analyze at very low concentrations. The sensor developed in our study was validated for parathion adsorption. In our study, first, Parathion imprinted polymers were synthesized. The synthesized MIPs are used as the recognition layer in the potentiometric sensor. The characterization of parathion imprinted polymers was done by FESEM, FT-IR, and zeta-sizer measurements. Optimization of the working conditions was carried out for the developed sensor system. The working pH was found to be 7.4.Measurements were taken for parathion samples with different concentrations under optimum operating conditions. When the results obtained were examined, a large linear range (10-8-10-4 mol L-1) and a satisfying detection limit against parathion (1.86 × 10-8 mol L-1) were calculated. Interference effect analysis was carried out within the scope of the performance tests of the potentiometric sensor. The analysis showed that interference did not affect the experimental results. In order to examine the matrix effect of the real sample environment, analyses were carried out in tap water and lake water. The recovery values in the analysis results are quite good. The results of the experiments show that the sensor we have developed can be used successfully in complex matrix environments.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3