A Supervised Machine Learning Model for Tool Condition Monitoring in Smart Manufacturing

Author:

S GaneshkumarORCID,T DeepikaORCID,Haldorai AnandakumarORCID

Abstract

In the current industry 4.0 scenario, good quality cutting tools result in a good surface finish, minimum vibrations, low power consumption, and reduction of machining time. Monitoring tool wear plays a crucial role in manufacturing quality components. In addition to tool monitoring, wear prediction assists the manufacturing systems in making tool-changing decisions. This paper introduces an industrial use case supervised machine learning model to predict the turning tool wear. Cutting forces, the surface roughness of a specimen, and flank wear of tool insert are measured for corresponding spindle speed, feed rate, and depth of cut. Those turning test datasets are applied in machine learning for tool wear predictions. The test was conducted using SNMG TiN Coated Silicon Carbide tool insert in turning of EN8 steel specimen. The dataset of cutting forces, surface finish, and flank wear is extracted from 200 turning tests with varied spindle speed, feed rate, and depth of cut. Random forest regression, Support vector regression, K Nearest Neighbour regression machine learning algorithms are used to predict the tool wear. R squared, the technique shows the random forest machine learning model predicts the tool wear of 91.82% of accuracy validated with the experimental trials. The experimental results exhibit flank wear is mainly influenced by the feed rate followed by the spindle speed and depth of cut. The reduction of flank wear with a lower feed rate can be achieved with a good surface finish of the workpiece. The proposed model may be helpful in tool wear prediction and making tool-changing decisions, which leads to achieving good quality machined components. Moreover, the machine learning model is adaptable for industry 4.0 and cloud environments for intelligent manufacturing systems.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3