Cancellation of Towing Ship Interference in Passive SONAR in a Shallow Ocean Environment

Author:

M. RemadeviORCID,Sureshkumar N.ORCID,Rajesh R.ORCID,Santhanakrishnan T.ORCID

Abstract

Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3