Construction and Analysis of Petri Net Model for Distributed Cyber Physical Systems

Author:

Sood VikasORCID,Nema Malay KumarORCID,Kumar RiturajORCID,Nene Manisha JORCID

Abstract

A Distributed Cyber-Physical System (DCPS) composition poses challenges in determining its emergent behaviour. These challenges occur due to (1) the appearance of causal loops of information and energy flow through cyber and physical channels and (2) inherent non-determinism in the temporally ordered flow of events within independently evolving interacting processes of Constituent Systems (CSs). Hence, there is a need to construct a model of the envisaged schematic of DCPS composition for analysis and verification of its significant properties in the conceptual design stage of the system development life cycle. This paper presents a procedure to construct DCPS composition models in Petri net formalism using distributed abstractions. The model for each CS is obtained from elementary constructs using compositional operators. The interaction among CSs occurs through channels obtained by connecting send and receive constructs of two CSs participating in an interaction. The internal processing within a CS characterizing its primary function is abstracted in a generic passthrough construct. Representing these constructs with compositional operators results in the complete DCPS model in Petri net formalism. A toolchain with Reference net workshop (Renew) as an integrated Petri net editing and analysis platform is configured to support DCPS modelling, simulation and analysis. The Renew tool functionality has been enhanced with a plugin designed and developed by authors to facilitate the drawing of the distributed composition model. A low-level Petri net analysis (Lola) v2.0 plugin is employed to verify the Petri net and temporal properties of the modelled DCPS scenarios. The properties of the resultant model are verified using well-established algorithms to analyze Petri nets. Further, system properties specified using temporal logic can be verified using model-checking algorithms for Petri nets. A moderately complex scenario involving interactions among six CSs illustrates the presented approach.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3