High Speed Machining for Enhancing the AZ91 Magnesium Alloy Surface Characteristics Influence and Optimisation of Machining Parameters

Author:

Marakini VikasORCID,Pai Srinivasa PORCID,Bhat Uday KORCID,Singh Dinesh ThakurORCID,Achar Bhaskar PORCID

Abstract

In this study, optimum machining parameters are evaluated for enhancing the surface roughness and hardness of AZ91 alloy using Taguchi design of experiments with Grey Relational Analysis. Dry face milling is performed using cutting conditions determined using Taguchi L9 design and Grey Relational Analysis has been used for the optimization of multiple objectives. Taguchi’s signal-to-noise ratio analysis is also performed individually for both characteristics and grey relational grade to identify the most influential machining parameter affecting them. Further, Analysis of Variance is carried to see the contribution of factors on both surface roughness and hardness. Finally, the predicted trends obtained from the signal-to-noise ratio are validated using confirmation experiments. The study showed the effectiveness of Taguchi design combined with Grey Relational Analysis for the multi-objective problems such as surface characteristics studies.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3