Genetic Algorithm Optimisation of a TNT Solidification Model

Author:

Susantez Çiğdem,Caldeira Aldélio Bueno

Abstract

The control of the solidification process of energetic materials is important to prevent manufacturing defects in high explosive ammunitions. The present work aims to propose an optimisation procedure to determine the value of the model parameter, avoiding the traditional trial and error approach. In this work, the solidification of TNT has been numerically modelled employing apparent heat capacity method and the model parameter was optimised using genetic algorithm. One dimensional numerical model has been solved in Comsol Multiphysics Modeling Software and the genetic algorithm code was written in Matlab. The Neumann’s analytical solution of the solidification front was used as a reference to build the fitness function, following the inverse problems concepts. The optimum model parameter has been predicted after 20 generations and among 30 candidate solutions for each generation. The numerical solution performed with the optimised model parameter has agreed with the analytical solution, indicating the feasibility of the proposed procedure. The discrepancy was 3.8 per cent when maximum difference between analytical and numerical solutions was observed.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3