Biometrics in Cyber Security

Author:

Kour Jaspreet,Hanmandlu M.,Ansari A.Q.

Abstract

Computers play an important role in our daily lives and its usage has grown manifolds today. With ever increasing demand of security regulations all over the world and large number of services provided using the internet in day to day life, the assurance of security associated with such services has become a crucial issue. Biometrics is a key to the future of data/cyber security. This paper presents a biometric recognition system which can be embedded in any system involving access control, e-commerce, online banking, computer login etc. to enhance the security. Fingerprint is an old and mature technology which has been used in this work as biometric trait. In this paper a fingerprint recognition system based on no minutiae features: Fuzzy features and Invariant moment features has been developed. Fingerprint images from FVC2002 are used for experimentation. The images are enhanced for improving the quality and a region of interest (ROI) is cropped around the core point. Two sets of features are extracted from ROI and support vector machine (SVM) is used for verification. An accuracy of 95 per cent is achieved with the invariant moment features using RBF kernel in SVM.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity Science and Cyber Operations: A Literature Survey;Complex System Modeling and Simulation;2023-12

2. Fusion of blockchain and biometrics: an integrated platform for aviation security and authentication;Disruptive Technologies in Information Sciences VI;2022-05-30

3. Investigating the drivers of cybersecurity enhancement in public organizations: The case of Jordan;THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES;2022-05-16

4. Contemporary survey on effectiveness of machine and deep learning techniques for cyber security;Machine Learning for Biometrics;2022

5. A Deep Learning based Approach for Real Time Face Recognition System;2021 International Conference on Electronics, Communications and Information Technology (ICECIT);2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3