Author:
Malagi Vindhya P.,D.R. Ramesh Babu,Rangarajan Krishnan
Abstract
<p>Vison based tracking in aerial images has its own significance in the areas of both civil and defense applications. A novel algorithm called aerial tracking learning detection which works on the basis of the popular tracking learning detection algorithm to effectively track single and multiple objects in aerial images is proposed in this study. Tracking learning detection (TLD) considers both appearance and motion features for tracking. It can handle occlusion to certain extent, and can work well on long duration video sequences. However, when objects are tracked in aerial images taken from platforms like unmanned air vehicle, the problems of frequent pose change, scale and illumination variations arise adding to low resolution, noise and jitter introduced by motion of the camera. The proposed algorithm incorporates compensation for the camera movement, algorithmic modifications in combining appearance and motion cues for detection and tracking of multiple objects and enhancements in the form of inter object distance measure for improved performance of the tracker when there are many identical objects in proximity. This algorithm has been tested on a large number of aerial sequences including benchmark videos, TLD dataset and many classified unmanned air vehicle sequences and has shown better performance in comparison to TLD.</p><p> </p>
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献