A Thermal Cycling Route for Processing Nano-grains in AISI 316L Stainless Steel for Improved Tensile Deformation Behaviour

Author:

Nanda Tarun,Kumar B. Ravi,Singh Vishal

Abstract

<p>The present work significantly improved the mechanical strength of AISI 316L stainless steel by producing nano-sized grains. Steel was subjected to cold rolling followed by repetitive thermal cycling to produce ultra-fine/ nano-sized grains. The optimum processing parameters including extent of cold deformation, annealing temperature for thermal cycling, soaking period during each thermal cycle, and number of thermal cycles were determined through a systematic step-by-step procedure. After conducting thermal cycling under optimum conditions, a significant amount of grain size reduction was achieved. The effect of nano-sized grains on tensile deformation behavior was analysed. High cold deformation resulted in increased amount of stored strain energy. The stored strain energy accelerated the re-crystallisation kinetics during the thermal cycling process. Every thermal cycle resulted in irregular dispersal of stored energy. This irregular dispersal of stored energy favoured recrystallisation rather than grain growth and led to refinement of grains, in the absence of strain induced martensite. Repetitive thermal cycling promoted grain refinement and resulted in very significant grain size reduction with resultant grain size in the range of 800–1200 nm as compared to initial size of 90–120 μm. The resultant microstructure improved tensile strength by<br />106.8 per cent, from 590 MPa to 1220 MPa.</p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3