Comparison of 3D Versus 4D Path Planning for Unmanned Aerial Vehicles

Author:

Cicibas Halil,Demir Kadir Alpaslan,Arica Nafiz

Abstract

<p>This research compares 3D versus 4D (three spatial dimensions and the time dimension) multi-objective and multi-criteria path-planning for unmanned aerial vehicles in complex dynamic environments. In this study, we empirically analyse the performances of 3D and 4D path planning approaches. Using the empirical data, we show that the 4D approach is superior over the 3D approach especially in complex dynamic environments. The research model consisting of flight objectives and criteria is developed based on interviews with an experienced military UAV pilot and mission planner to establish realism and relevancy in unmanned aerial vehicle flight planning. Furthermore, this study incorporates one of the most comprehensive set of criteria identified during our literature search. The simulation results clearly show that the 4D path planning approach is able to provide solutions in complex dynamic environments in which the 3D approach could not find a solution.</p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UAV path planning techniques: a survey;RAIRO - Operations Research;2024-07

2. A Helicopter Path Planning Method Based on AIXM Dataset;Journal of Cases on Information Technology;2023-11-10

3. Weighted-leader search: A new choice in metaheuristic and its application in real-world large-scale optimization;Advances in Engineering Software;2023-02

4. 4D Trajectory Planning Based on Fast Marching Square for UAV Teams;IEEE Transactions on Intelligent Transportation Systems;2023

5. Three-dimensional waypoint following for fixed-wing unmanned aerial vehicles in obstacle-filled environments;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3