Fuzzy Logic-based Adaptive Extended Kalman Filter Algorithm for GNSS Receivers

Author:

Sreeharsha Pasumarthi Babu,Devanaboyina Venkata Ratnam

Abstract

<p class="p1">Designing robust carrier tracking algorithms that are operable in strident environmental conditions for global navigation satellite systems (GNSS) receivers is the discern task. Major contribution in weakening the GNSS signals are ionospheric scintillations. The effect of scintillation can be known by amplitude scintillation index <em>S</em>4 and phase scintillation index sf parameters. The proposed fuzzy logic based adaptive extended Kalman filter (AEKF) method helps in modelling the signal amplitude and phase dynamically by Auto-Regressive Exogenous (ARX) analysis using Sugeno fuzzy logic inference system. The algorithm gave good performance evaluation for synthetic Cornell scintillation monitor (CSM) data and real-time strong scintillated PRN 12 L1 C/A data on October 24<span class="s1"><sup>th</sup></span>, 2012 around 21:30 h, Brazil local time collected by GNSS software navigation receiver (GSNR’x). Fuzzy logic algorithm is implemented for selecting the ARX orders based on estimated amplitude and phase ionospheric scintillation observations. Fuzzy based AEKF algorithm has the capability to mitigate ionospheric scintillations under both geomagnetic quiet and disturbed conditions.</p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive beamforming for cognitive radio based wireless communication systems;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

2. Design and development of image edge detector using FPGA board;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

3. Removal of artifacts in electrocardiogram signal using modified data normalized adaptive learning;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

4. Artifact removal in thoracic electrical bioimpedance signals using robust diffusion least power algorithm;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

5. Spectrum sensing using adaptive learning algorithm for health care monitoring systems;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3