Range Performance Modelling of Thermal Imaging System based on Single Parameter Characterised by Ambient Temperature and Relative Humidity

Author:

Khare Sudhir,Singh Manvendra,Kaushik Brajesh Kumar

Abstract

Range performance of a thermal imaging system is characterised by the prevailing atmospheric condition present at that time. There are two dominant parameters that limit the range performance of any thermal imaging systems i.e. ambient temperature and relative humidity. In the present work, comparative study of acquisition range performance of thermal imaging system operating in LWIR and MWIR spectral bands has been presented as a function of absolute humidity (AH) which is responsible for attenuation of IR radiation due to water vapour molecules present in path length. Presentation of acquisition range as function of AH leads to a single range performance table/graph for thermal imaging system under consideration for predefined visibility (V), target size, ambient temperature (T), target to background temperature difference (ΔT) and relative humidity (RH). This table/graph can be used to predict detection, recognition and identification ranges for any set of combination of air temperature (T) and relative humidity (RH). The approach presented in this paper is versatile and has been illustrated through comparative performance analysis of LWIR and MWIR thermal imaging systems based on 640X512 staring focal plane array (FPA) having identical design parameters in terms of resolution (IFOV). It has been shown that MWIR performance is superior to LWIR beyond a crossover value of AH(T) even though MRTD of MWIR sensor is inferior to that of LWIR sensor at all spatial frequencies. Study has been carried out both for clear atmosphere and hazy conditions.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3