Data Analysis and Validation of Acquired Temperature Data on Underwater Platform

Author:

Kumar Arun,Anjaneyulu Lokam

Abstract

<p class="western" style="margin-left: -2.25cm; margin-bottom: 0.35cm; line-height: 115%;">Underwater missiles are launched from canister by hot gasses produced by a gas generator. Hot gasses eject the missile out of canister, positioned on an underwater platform in high seas at a depth of 50 m to 70 m. During development phase of submarine launched missile, maximum number of physical parameters related to platform and launching mechanism are acquired on a data acquisition system on-board platform and selected critical parameters are transmitted to control station in real time through an optical data communication link. Missile parameters are recorded on-board and transmitted to the control station by delayed transmission technique once the missile is out of water. Exit velocity of missile is very important parameter for the missile trajectory and range, which depends upon the heat loss in canister and annular gap pressure between missile and canister during the ejection process. Prediction of exit velocity is validated by heat loss calculation by measured temperature at different stations during the test. Temperature measurement is carried out by sensors mounted on the inner wall of canister and also by jumping type of temperature sensor, which measures canister gas temperature. In spite of all efforts, few sensors do not work as expected. It is important to measure various parameters according to instrumentation measurement plan. In case of temperature measurement, sometimes, it is required to predict temperature at location, where sensor was originally not mounted. To validate the recorded test data, another set of data is needed for which one has to wait till next test is conducted that may take years and practically impossible to ensure identical test setup and environmental condition. A mathematical approach to predict temperature at required location and to validate the recorded test data is presented.</p><p class="western" style="margin-left: -2.25cm; margin-bottom: 0.35cm; line-height: 115%;"> </p><p class="western" style="margin-left: -2.25cm; margin-bottom: 0.35cm; line-height: 115%;"> </p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3