Indoor Scene Recognition for Micro Aerial Vehicles Navigation using Enhanced-GIST Descriptors

Author:

Anbarasu B.,Anitha G.

Abstract

<p>An indoor scene recognition algorithm combining histogram of horizontal and vertical directional morphological gradient features and GIST features is proposed in this paper. New visual descriptor is called enhanced-GIST. Three different classifiers, k-nearest neighbour classifier, Naïve Bayes classifier and support vector machine, are employed for the classification of indoor scenes into corridor, staircase or room. The evaluation was performed on two indoor scene datasets. The scene recognition algorithm consists of training phase and a testing phase. In the training phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for all the training images in the datasets and classifiers are trained for these image feature vectors and image labels (corridor-1, staircase-2 and room-3). In the test phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for each unknown test image sample and classification is performed using a trained scene recognition model. The experimental results show that indoor scene recognition algorithm employing SVM with enhanced GIST descriptors produces very high recognition rates of 97.22 per cent and 99.33 per cent for dataset-1 and dataset-2, compared to kNN and Naïve Bayes classifiers. In addition to its accuracy and robustness, the algorithm is suitable for real-time operations.</p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3