Author:
Sanwale Jitu,Singh Dhan Jeet
Abstract
Aerodynamic parameter estimation involves modelling of force and moment coefficients and computation of stability and control derivatives from recorded flight data. This problem is extensively studied in the past using classical approaches such as output error, filter error and equation error methods. An alternative approach to these model based methods is the machine learning such as artificial neural network. In this paper, radial basis function neural network (RBF NN) is used to model the lateral-directional force and moment coefficients. The RBF NN is trained using k-means clustering algorithm for finding the centers of radial basis function and extended Kalman filter for obtaining the weights in the output layer. Then, a new method is proposed to obtain the stability and control derivatives. The first order partial differentiation is performed analytically on the radial basis function neural network approximated output. The stability and control derivatives are computed at each training data point, thus reducing the post training time and computational efforts compared to hitherto delta method and its variants. The efficacy of the identified model and proposed neural derivative method is demonstrated using real time flight data of ATTAS aircraft. The results from the proposed approach compare well with those from the other.
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献