Abstract
Effect of weight fraction (WF) of nanographite (NG, 400 nm) on electrical, mechanical and wear and characteristics of graphite epoxy composites (GECs) were investigated. For this purpose, a series of GECs was prepared through dispersion of various WF of NG into epoxy resin, followed by curing with polyamine. Dispersion of NG into epoxy matrix and onward formation of GECs and was revealed through UV, Fourier transformed spectra and atomic force microscopy (AFM). Photoelastic analysis in combination with AFM reveals the presence of uniformly dispersed domain of NG into stress free GECs with fringe order ranging 0.23 - 0.61 under compression of 8 - 20 kgf. GECs have rendered a rising trend in DC conductance ranging 98.32 - 0.54 μS/cm with electrical percolation threshold at 175 WF of NG. GECs have shown enhanced compressive, impact, tensile, strength, Rockwell hardness and wear resistance at 200 WF of NG. In general, GECs has shown a marginal modification in their compressive strength by 5.30 % over cured epoxy. However, their impact and tensile strengths were largely improved to 31.78% and 43.98% over cured epoxy. The present manuscript provides a novel method of modification in electrical, mechanical and wear behaviour epoxy through introducing NG as a novel alternative to traditionally used graphite as filler for development of GECs.
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献