Approximate Solution of Riccati Differential Equation via Modified Greens Decomposition Method

Author:

Ujlayan AmitORCID,Arya MohitORCID

Abstract

Riccati differential equations (RDEs) plays important role in the various fields of defence, physics, engineering, medical science, and mathematics. A new approach to find the numerical solution of a class of RDEs with quadratic nonlinearity is presented in this paper. In the process of solving the pre-mentioned class of RDEs, we used an ordered combination of Green’s function, Adomian’s polynomials, and Pade` approximation. This technique is named as green decomposition method with Pade` approximation (GDMP). Since, the most contemporary definition of Adomian polynomials has been used in GDMP. Therefore, a specific class of Adomian polynomials is used to advance GDMP to modified green decomposition method with Pade` approximation (MGDMP). Further, MGDMP is applied to solve some special RDEs, belonging to the considered class of RDEs, absolute error of the obtained solution is compared with Adomian decomposition method (ADM) and Laplace decomposition method with Pade` approximation (LADM-Pade`). As well, the impedance of the method emphasised with the comparative error tables of the exact solution and the associated solutions with respect to ADM, LADM-Pade`, and MGDMP. The observation from this comparative study exhibits that MGDMP provides an improved numerical solution in the given interval. In spite of this, generally, some of the particular RDEs (with variable coefficients) cannot be easily solved by some of the existing methods, such as LADM-Pade` or Homotopy perturbation methods. However, under some limitations, MGDMP can be successfully applied to solve such type of RDEs.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3