Optimal Falling Track Design for Twice detonating Fuze of Double event Fuel air Explosive with High Speed

Author:

Ye CongliangORCID,Zhang QiORCID

Abstract

To prevent the initiation failure caused by the uncontrolled fuze and improve the weapon reliability in the high-speed double-event fuel-air explosive (DEFAE) application, it is necessary to study the TDF motion trajectory and set up a twice-detonating fuze (TDF) design system. Hence, a novel approach of realising the fixed single-point center initiation by TDF within the fuel air cloud is proposed. Accordingly, a computational model for the TDF motion state with the nonlinear mechanics analysis is built due to the expensive and difficult full-scale experiment. Moreover, the TDF guidance design system is programmed using MATLAB with the equations of mechanical equilibrium. In addition, by this system, influences of various input parameters on the TDF motion trajectory are studied in detail singly. Conclusively, the result of a certain TDF example indicates that this paper provides an economical idea for the TDF design, and the developed graphical user interface of high-efficiency for the weapon designers to facilitate the high-speed DEFAE missile development.

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3