Evaluation of Boron Combustion for Ducted Rocket Applications Using Condensed Product Analysis

Author:

Hashim Syed AlayORCID,Karmakar SrinibasORCID,Roy ArnabORCID,Abubakar MuazuORCID

Abstract

Boron, a metalloid, produces high energy upon combustion. It is recommended as an ingredient for fuel or propellant in rocket propulsion, despite the challenge of extracting its full thermal energy. So far no one has claimed the complete energy conversion of boron upon combustion. On the other hand, the current propulsion system of the Meteor missile uses boron-loaded propellant. The boron-loaded propellant provides an approximately three-fold increase in specific impulse compared to conventional propellants. The present study focuses on boron-HTPB-based solid fuels impregnated with early ignited particles as additives, aiming to assess the combustion performance of boron particles. These additives are magnesium (Mg), titanium (Ti), and activated charcoal (C), and their effects are evaluated based on the residual active boron content in the condensed combustion products (burned residues). An economical tool commonly called stagnation flow or opposed flow burner (OFB) is used to deflagrate the fuel sample by means of pressurized oxygen gas. The condensed combustion products are examined using a field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Among the fuel combinations investigated here, magnesium has been found to be a good burning enhancer of boron, leaving the lowest active boron content (30%) in the burned-out residue. The current research aims to develop an efficient boron-containing solid fuel for hybrid propellant ducted rocket engine applications.

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3