Experimental and Numerical Investigation of Bodywork Effect on High Hardness Armour Steel Against a 7.62 x 51 mm NATO Ball M80 Projectile

Author:

Vijaykumar Gavhane VirajORCID,Sharma AnshulORCID,Gorrepati Srinivasa RaoORCID

Abstract

Small arms ammunition like the 5.56×45 mm NATO Ball and 7.62×51 mm NATO Ball projectiles constitute a significant threat to light armoured vehicles. These vehicles are mostly comprised of single-layered metallic high-hardness steel armour, but as an essential vehicle design feature, mild steel bodywork is externally mounted in certain areas for fenders, toolkit boxes, storage boxes, etc. over the main armour, i.e., high-hardness steel armour. These are necessary design features of vehicles, so they can’t be neglected regarding ballistic protection against threats. Also, to provide better ballistic protection in up-armoured vehicles, armour consisting of high-hardness steel armour is integrated or mounted just behind the existing bodywork of the car. Thus, this paper experimentally and numerically investigated the “bodywork effect,” which is also called the “K-effect,” and found that the configuration where the bodywork of mild steel is placed in front of high-hardness steel armour plate failed to provide better ballistic protection against the 7.62×51 NATO Ball M80 projectile fired at 0° angle of impact with a velocity of 833±20m/s from 10 m distance. However, the single high-hardness armour steel plate provided better ballistic protection than the configuration consisting of bodywork. For the validation of the experimental investigations, the arrangements were numerically simulated. The main aim of this work was to check the bodywork effect against this particular projectile and investigate factors contributing to the phenomenon.

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3