An Efficient Spoofing Attack Detection Using Deep Learning Based Physical Layer Security Technique

Author:

Mohan SwethambriORCID,Annadurai AtchayaORCID,Gunaseelan K.ORCID

Abstract

Spoofing attack detection plays a crucial role in the defence field, involving critical and highly secured data processing. The accurate attack detection mechanism prevents unauthorised access to sensitive information, thereby protecting National security. Physical Layer Security (PLS) is a promising emerging technique that uses the wireless channel’s randomness to secure the communication network. The spoofing attack is one of the severe threats to the wireless network, where the attacker imitates the legitimate user to launch an attack against the network. This paper investigates the channel characteristics-based physical layer technique to detect spoofing attacks. For static radio environments, the two-sample independent hypothesis testing is used to identify the spoofing attack, showing an improvement in detection accuracy of 97 %. The attack detection problem is considered a Reinforcement Learning (RL) based classification problem for a challenging dynamic radio environment. It is simulated using the actor-critic-based Deep Reinforcement Learning (DRL) technique with the help of the Reformed Deep Deterministic Policy Gradient (Re-DDPG) algorithm. The simulated results show that the proposed method performs better than the existing strategies and achieves a Receiver Operating Characteristics (ROC) value of 0.96. The detection accuracy of the proposed method can reach up to 98 %, with precision and recall of about 98 % and 99 %, respectively.  

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3