Studying the Interaction of Waves to Determine the Impact Response of a Layered Elastic Medium

Author:

Singh Satyendra PratapORCID,Singh HarpreetORCID,Mahajan PuneetORCID

Abstract

When an impactor strikes a layered target, both the impactor and the target experience waves. The waves produced travel and engage in interactions with other waves as well as the interfaces in the impactor-target system. For the impact problems on a layered medium with periodic properties and layered elastic media of Goupillaud-type (each layer has the same wave travel time), researchers have presented an analytical solution for stress variation with position and time within the target. However, the solution for an elastic media not satisfying the above conditions is not available in the literature. The present study fills this gap and finds the behaviour of a generalized layered medium to an impact problem. The response of the material at any position inside the layered medium is found by solving the interaction between waves, interfaces, and boundaries. The mass, momentum balance and constitutive relationship are solved to get the exact analytical expressions for particle velocity and stress for each possible wave interaction happening in the impactor and the layered medium. The expressions are utilized in a computer program to study the impact behaviour of a layered media. The code tracks each wave as it travels through the system and identifies those interactions that occur in the shortest time, uses the stress and velocity expression for that interaction, and updates the state of the material. When stress produced at the impact surface is tensile in nature, the impactor and target can be separated. The work can be applied to both finite and semi-infinite impactors and targets, and the layered medium does not necessarily have to be a periodic layered media or a Goupillaud-type medium.

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3