Author:
Srihari P.,Mallesh M.A.,Prasad G. Sai Krishna,Charyulu B.V.N.,Reddy D.N.
Abstract
<p>This paper presents an insight for the study of transient, compressible, intermittent pulsed detonation engine with one-step overall reaction model to reduce the computational complexity in detonation simulations. Investigations are done on flow field conditions developing inside the tube with the usage of irreversible one-step chemical reactions for detonations. In the present simulations 1-D and 2-D axisymmetric tubes are considered for the investigation. The flow conditions inside the detonation tube are estimated as a function of time and distance. Studies are also performed with different grid sizes which influence the prediction of Von-Neumann spike, CJ Pressure and detonation velocity. The simulation result from the single-cycle reaction model agrees well with the previous published literature of multi-step reaction models. The present studies shows that one-step overall reaction model is sufficient to predict the flow properties with reasonable accuracy. Finally, the results from the present study were compared and validated using NASA CEA.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 265-271, DOI: http://dx.doi.org/10.14429/dsj.65.8730</strong></p>
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献