Simulation of Thin Film Thermocouple for High Temperature Measurement Applicable to Missiles

Author:

Sonker Manoj Kumar,Dewal M. L.

Abstract

<p>Thermocouples have been extensively used for the measurement of temperature since the advent of seebeck effect. Numerous sensors have been developed for temperature measurement, yet measurement of high temperature flowing fluid has been a challenging task. For the measurement of static temperature the measuring device should travel with the fluid at the same speed without disturbing the flow, which is quite unrealistic. So indirect determination of static temperature of flowing fluid is done by using thermocouple exposed into the flowing fluid. Other sensors available for high temperature measurement may lead to problems like resistance in the flow path of fluid which changes the structural dynamics. Thin film thermocouple (TFTC) based on W-W26Re for super high temperature measurement has been investigated which can be used in missiles for surface temperature measurement of nozzle and rocket interior surface. TFTC does not cause disruption in the flow path with maintaining structural integrity. The W-W26Re thermocouple offers advantage of higher seebeck coefficient at high temperature i.e. above 750 K, and usability in vacuum, inert and hydrogen atmosphere. Zirconia Fiber has been proposed as insulation protection material over thermocouple. Modelling and simulation of the TFTC for the temperature range 300 K - 2900 K has been presented. FEA model using PDE has been presented to implement heat equation, current balance  quation, Gauss theorem and Neumann boundary condition. The expected voltage production on exposed temperature gradient has been studied.</p>

Publisher

Defence Scientific Information and Documentation Centre

Subject

Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3