The Effect of Number of Factors and Data on Monthly Weather Classification Performance Using Artificial Neural Networks

Author:

Shofura Shofura,Suryani M.Si Sri,Salma Linda,Harini Sri

Abstract

Current weather-related research only focuses on weather prediction based on raw data and the factors used are generally 4 factors: average temperature, solar radiation, air pressure, and wind. In this research, monthly weather prediction is done using 5 factors where the additional factor used is rainfall in the previous time. In contrast to previous prediction research, the prediction process carried out in this study emphasizes the modeling of training data according to the desired prediction model.. These two things distinguish this research from previous studies. The prediction model used in this study is a classification-based prediction model that is the Artificial Neural Network (ANN) method combined with the backpropagation algorithm for calculating the weight of the ANN network. The data used are meteorological data from 2010 to 2018 in the Bogor area, where data from 2010 to 2016 are used as training data, and data from 2017 to 2018 are used as test data. The results of this study indicate that the design of the model with the use of data for 6 years with feature data of 5 factors has an accuracy rate of 83.33%.

Publisher

School of Computing, Telkom University

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3