STABILITY ANALYSIS OF A SHIGELLA INFECTION EPIDEMIC MODEL AT ENDEMIC EQUILIBRIUM

Author:

Ochi Philip O.,Agada A. A.,Timothy Jeremiah,Urum T. G.,Ochi H. T.,Nworah Damascus Arinze

Abstract

In this study, we modified continuous mathematical model for the dynamics of shigella outbreak at constant recruitment rate formulated by (Ojaswita et al., 2014). In their model, they partitioned the population into Susceptible (S), Infected (I) and recovered (R) individuals. We incorporated a vaccinated class (V), educated class (G), exposed class (E), asymptomatic (A) hospitalized class (H) and Bacteria class (B) with their corresponding parameters. We analyzed a SVGEAIHRB compartmental nonlinear deterministic mathematical model of shigella epidemic in a community with constant population. Analytical studies were carried out on the model using the method of linearized stability. The basic reproductive number  that governs the disease transmission is obtained from the largest eigenvalue of the next-generation matrix. The endemic equilibrium is computed and proved to be locally and globally asymptotically stable if  and unstable if  . Finally, we simulate the model system in MATLAB and obtained the graphical behavior of the infected compartments. From the simulation, we observed that the shigella infection was eradicated when while it persist in the environment when .

Publisher

Federal University Dutsin-Ma

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3