A MULTINOMIAL NAÏVE BAYES DECISION SUPPORT SYSTEM FOR COVID-19 DETECTION

Author:

Awwalu JamiluORCID,Umar Nana Aisha,Ibrahim Mubaraka Sani,Nonyelum Ogwueleka Francisca

Abstract

Coronavirus disease 2019 termed COVID-19 is a highly infectious and pathogenic illness caused by severe acute respiratory syndrome. Symptoms of COVID-19 range from mild to severe, in some cases leading to death. Early detection could help to monitor progression of the disease, mitigate spread of the disease and possibly reduce mortality rate. Computer-aided diagnosis systems are designed to complement health care systems and assist in the early detection of diseases. Currently, as it is not possible to test all citizens especially in developing countries with very large populations due to financial constraints and the standard of their healthcare facilities, the problem of identifying suspected cases and deciding laboratory test priority among citizens is evident and more pressing. Therefore in this study, we introduce an interactive Artificial Intelligent web system using the Multinomial Naïve Bayes algorithm with the aim of detecting warning COVID-19 symptoms and to provide fitting suggestions.  Furthermore, the study also evaluates the performance of the Multinomial Naïve Bayes based on the different holdout approaches experimented. The experimental results are promising as the Multinomial Naïve Bayes is shown to achieve high accuracy detection thus providing a reliable method to identify warning symptoms of COVID-19.

Publisher

Federal University Dutsin-Ma

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Model for COVID-19 Classification Using Fine Tuned ResNet50 on Chest X-Ray Images;Machine Learning Research;2024-05-10

2. Advancing COVID-19 Prediction with Deep Learning Models: A Review;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Comprehensive Browser Extension for Analysing YouTube User Engagement, Controversy, User Requirements, and Trending Keywords;2023 33rd International Telecommunication Networks and Applications Conference;2023-11-29

4. Online Consumer Alignment using Supervised Machine Learning Technique;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

5. Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease;Data Science and Management;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3