A BIOMIMETIC UNDERWATER ROBOT DIRECTION CHANGING ALGORITHMS

Author:

AFOLAYAN Matthew Olatunde

Abstract

The performance of the steady-turning while swimming, and sharp-turning motion algorithms of a biomimetic underwater robot in the form of a fish is presented in this work. The biological fish modelled is a Mackerel - Scomber scombrus. It’s motion patterns are precalculated and programmed into its firmware as an inflexible algorithm to save power consumption due to continuous motor position recalculations. The robot tail is a six segments plywood panels with vulcanized rubber acting as joints. This tail structure is driven by three remote-control servomotors (Futaba 3003) under the control of microcontroller (PIC18F4520). The algorithm for steady turning is derived steady swimming by introducing offset in the servomotor displacements about the midline of the robot. The algorithm for sharp turning treats the three servomotors as one and turn them simultaneously to left or right and restore them quickly into straight form, which allows the robot to turn at a tight corner. A 54cm turning radius was achieved with the steady turn while swimming. The sharp turn however works but requires several attempts before a proper reorientation was achieved in the desired direction.  

Publisher

Federal University Dutsin-Ma

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3