A MONTE CARLO STUDY ON THE PERFORMANCE OF EMPIRICAL THRESHOLD AUTOREGRESSIVE MODELS UNDER VIOLATION OF STATIONARITY ASSUMPTIONS

Author:

Yusuf Lateef,Abdulkadir Ahmad,Abdulrasheed Bello,Abdullahi Ahmed Abdulazeez

Abstract

One of the major importance of modeling in time series is to forecast the future values of that series. And this requires the use of appropriate method to fit the time series data which are dependent on the nature of the data. We are aware that most financial and economic data are mostly non-stationary. . The study is an extension of the work of Romsen et al (2020) which dealt with forecasting of nonlinear data that are stationary with only two threshold regimes. The study recommendations that In further research, the above models can be extended to other regimes (such as the 3 – regimes Threshold models) as well as comparing them with other regimes to understand the behaviors of the other regimes in selecting a suitable model for a data. STAR (2,1) and SETAR (2,2) are recommended to fit and forecast nonlinear data of trigonometric, exponential and polynomial forms respectively that are non-stationary.

Publisher

Federal University Dutsin-Ma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3