Segment Edit and Segment Weight Optimization: Two Techniques for Intensity Modulated Radiation Therapy and Their Application to the Planning for Nasopharyngeal Carcinoma

Author:

Li Qilin1,Pei Honglei1,Mu Jingming1,Hu Qiang1,Gu Wendong1

Affiliation:

1. Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou City, 185 Ju Qian Jie, Changzhou City 213003, Jiangsu Province, China

Abstract

The purpose of this study was to evaluate the two functions: segment weight optimization (SWO) and segment edit (SE) in the latest XiO 4.7 radiation treatment planning system and their effect on the planning of intensity modulated radiation therapy (IMRT) for Nasopharyngeal Carcinoma (NPC). SWO first appeared in XiO 4.5 and SE in XiO 4.7. Twelve patients with NPC were selected and there were three plans for each patient: the common step-and-shoot IMRT plan (C-IMRT); S-IMRT was based on the result of C-IMRT and the plan was further optimized with SWO; F-IMRT was based on S-IMRT and the segments were edited for lowering the dose received by normal tissues. The paired plans were analyzed by comparing the total number of segments, monitor units, the homogeneity index and conformity index of the target volumes and the dose delivered to organs at risk (OAR) including spinal cord, brain stem, optic nerves, chiasm, parotids and larynx. The study exhibited that the total number of segments and monitor units of S-IMRT and F-IMRT were around 25.3%, 3.4% less than those of C-IMRT respectively. The HI and CI indexes of target volumes among three kinds of plans did not show the significant difference. The doses received by spinal cord, brain stem, parotids, larynx were decreased at S-IMRT and F-IMRT as compared to C-IMRT; the highest doses delivered to chiasm and optic nerves were S-IMRT, the next C-IMRT, the lowest F-IMRT. This study showed that the SWO function could substantially reduce the total number of segments of step-and-shoot IMRT plans and the SE function had the incredible ability to lower the dose received by normal tissues.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3