3D Dose Reconstruction of Pretreatment Verification Plans Using Multiple 2D Planes from the OCTAVIUS/Seven29 Phantom Array

Author:

Calvo O.1,Stathakis S.1,Gutiérrez A. N.1,Esquivel C.1,Papanikolaou N.1

Affiliation:

1. Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA

Abstract

The purpose of this study is to evaluate 3D dose reconstruction of pretreatment verification plans using multiple 2D planes acquired from the OCTAVIUS phantom and the Seven29 detector array. Eight VMAT patient treatment plans of different sites were delivered onto the OCTAVIUS phantom. The plans span a variety of tumor site locations from low to high plan complexity. A patient specific quality assurance (QA) plan was created and delivered for each of the 8 patients using the OCTAVIUS phantom in which the Seven29 detector array was placed. Each plan was delivered four times by rotating the phantom in 45° increments along its longitudinal axis. The treatment plans were delivered using a Novalis Tx with the HD120 MLC. Each of the four corresponding planar doses was exported as a text file for further analysis. An in-house MATLAB code was used to process the planar dose information. A cylindrical geometry-based, linear interpolation method was utilized to generate the measured 3D dose reconstruction. The TPS calculated volumetric dose was exported and compared against the measured reconstructed volumetric dose. Dose difference, dose area histograms (DAH), isodose lines, profiles, 2D and 3D gamma were used for evaluation. The interpolation method shows good agreement (<2%) between the planned dose distributions in the high dose region but shows discrepancies in the low dose region. Horizontal profiles, dose area histograms and isodose lines show good agreement for the sagittal and coronal planes but demonstrate slight discrepancies in the transverse plane. The 3D gamma index average was 92.4% for all patients when a 5%/5 mm gamma passing rate criteria was employed but dropped to <80.1% on average when parameters were reduced to 2%/2 mm. A simple cylindrical geometry-based, linear interpolation method is able to predict good agreement in the high dose region between the reconstructed volumetric dose and the planned volumetric dose. It is important to mention that the interpolation algorithm introduces dose discrepancies in small regions within the high dose gradients due to the interpolation itself. However, the work presented serves as a good starting point to establish a benchmark for the level of manipulation necessary to obtain 3D dose delivery quality assurance using current technology.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3