Strategic Steps for Advanced Molecular Imaging with Magnetic Resonance-Based Diagnostic Modalities

Author:

Belkic´ Dž.1,Belkic´ K.123

Affiliation:

1. Department of Oncology-Pathology, Karolinska Institute, P.O. Box 260 Stockholm, SE-17176, Sweden

2. School of Community and Global Health, Claremont Graduate University, 675 West Foothill Blvd., Suite 310, Claremont, California, USA 91711-3475

3. Institute for Prevention Research, Keck School of Medicine, University of Southern California, 1000 S. Fremont Avenue, Alhambra, California, USA 91803

Abstract

With the rapidly-expanding sophistication in our understanding of cancer cell biology, molecular imaging offers a critical bridge to oncology. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about many metabolites at the same time. Since MRS entails no ionizing radiation, repeated monitoring, including screening can be performed. However, MRS via the fast Fourier transform (FFT) has poor resolution and signal-to-noise ratio (SNR). Moreover, subjective and non-unique (ambiguous) fittings of FFT spectra cannot provide reliable quantification of clinical usefulness. In sharp contrast, objective and unique (unambiguous) signal processing by the fast Padé transform (FPT) can increase resolution and retrieve the true quantitative metabolic information. To illustrate, we apply the FPT to in vitro MRS data as encoded from malignant ovarian cyst fluid and perform detailed analysis. This problem area is particularly in need of timely diagnostics by more advanced modalities, such as high-resolution MRS, since conventional methods usually detect ovarian cancers at late stages with poor prognosis, whereas at an early stage the prognosis is excellent. The reliability and robustness of the FPT is assessed for time signals contaminated with varying noise levels. In the presence of higher background noise, all physical metabolites were unequivocally identified and their concentrations precisely extracted, using small fractions of the total signal length. Via the “signal-noise separation” concept alongside the “stability test”, all non-physical information was binned, such that fully denoised spectra were generated. These results imply that a reformulation of data acquisition is needed, as guided by the FPT in MRS, since a small number of short transient time signals can provide high resolution and good SNR. This would enhance the diagnostic accuracy of MRS and shorten examination times, thereby improving efficiency and cost-effectiveness of this high throughput cancer diagnostic modality. Such advantages could be particularly important for more effective ovarian cancer detection, as well as more broadly for improved diagnostics and treatment within oncology.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3