A Comparative Analysis of Radiobiological Models for Cell Surviving Fractions at High Doses

Author:

Andisheh B.,Edgren M.,Belkić Dž.12,Mavroidis P.,Brahme A.,Lind B. K.

Affiliation:

1. Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden

2. Department of Medical Radiation Physics, Stockholm University, Stockholm, Sweden

Abstract

For many years the linear-quadratic (LQ) model has been widely used to describe the effects of total dose and dose per fraction at low-to-intermediate doses in conventional fractionated radiotherapy. Recent advances in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) have increased the interest in finding a reliable cell survival model, which will be accurate at high doses, as well. Different models have been proposed for improving descriptions of high dose survival responses, such as the Universal Survival Curve (USC), the Kavanagh-Newman (KN) and several generalizations of the LQ model, e.g. the Linear-Quadratic-Linear (LQL) model and the Padé Linear Quadratic (PLQ) model. The purpose of the present study is to compare a number of models in order to find the best option(s) which could successfully be used as a fractionation correction method in SRT. In this work, six independent experimental data sets were used: CHOAA8 (Chinese hamster fibroblast), H460 (non-small cell lung cancer, NSLC), NCI-H841 (small cell lung cancer, SCLC), CP3 and DU145 (human prostate carcinoma cell lines) and U1690 (SCLC). By detailed comparisons with these measurements, the performance of nine different radiobiological models was examined for the entire dose range, including high doses beyond the shoulder of the survival curves. Using the computed and measured cell surviving fractions, comparison of the goodness-of-fit for all the models was performed by means of the reduced χ2-test with a 95% confidence interval. The obtained results indicate that models with dose-independent final slopes and extrapolation numbers generally represent better choices for SRT. This is especially important at high doses where the final slope and extrapolation numbers are presently found to play a major role. The PLQ, USC and LQL models have the least number of shortcomings at all doses. The extrapolation numbers and final slopes of these models do not depend on dose. Their asymptotes for the cell surviving fractions are exponentials at low as well as high doses, and this is in agreement with the behaviour of the corresponding experimental data. This is an important improvement over the LQ model which predicts a Gaussian at high doses. Overall and for the highlighted reasons, it was concluded that the PLQ, USC and LQL models are theoretically well-founded. They could prove useful compared to the other proposed radiobiological models in clinical applications for obtaining uniformly accurate cell surviving fractions encountered in stereotactic high-dose radiotherapy as well as at medium and low doses.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3