In vivo MRI Follow-up of Murine Tumors Treated by Electrochemotherapy and other Electroporation-based Treatments

Author:

Calmels L.12,Al-Sakere B.34,Ruaud J.-P.12,Leroy-Willig A.12,Mir L. M.34

Affiliation:

1. Univ. Paris-Sud, IR4M, UMR 8081

2. CNRS, IR4M, UMR 8081, Orsay, 91405, France

3. Univ. Paris-Sud, UMR 8203

4. CNRS, UMR 8203, Institut Gustave Roussy, Villejuif, 94805, France

Abstract

In vivo cell electropermeabilization can be used alone or in combination with a hydrophilic, nonpermeant cytotoxic drug such as bleomycin (electrochemotherapy) to efficiently treat tumors. We used magnetic resonance imaging to detect rapid structural modifications in tumors treated by electroporation-based methods. Water diffusion coefficient (ADC), transverse relaxation time (T2) and tumor volume of fibrosarcomas xenografted on syngenic mice were measured upon 3 groups of 6 treated mice within the 48 hrs following ECT done with a normal (BE) or a high dose of bleomycin (HBE), and after irreversible electroporation (IRE), and in three control groups. As expected, the tumor volume increased in the control groups at 48 hrs (p < 0.05) and the values of ADC and T2 did not varied significantly in the control groups except for ADC decrease and T2 increase observed between 3 hrs and 24 hrs (p < 0.03) in the group that received bleomycin only. Tumor volumes decreased significantly at 24 hrs in the IRE and HBE groups. The mean tumor ADC increased significantly at 24 hrs (+17.6%, p < 0.03) in the BE group, probably reflecting apoptosis, while in the HBE group the mean tumor ADC increased earlier, at 10 hrs (+19%, p < 0.03) because of the speed of the pseudoapopototic process. In the IRE group, the mean tumor ADC decreased significantly at 1 hrs (p < 0.05) and 3 hrs (p < 0.03), and T2 decreased (p < 0.03), both probably reflecting cell swelling induced by the vascular lock. Thus ADC and T2 changes in the treated tumors correlated with previous histological observations on the same tumor models. Noteworthy, ADC allowed the visualization of early and rapid changes in the treated tumors, when tumor volume monitoring was not yet able to detect any effect of the treatments.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3