VELOCITIES AND TRAJECTORIES OF WAVE MOTION IN A TWO-LAYER HYDRODYNAMIC SYSTEM

Author:

Hurtovyi Y.1,Kuharenko O.1

Affiliation:

1. Volodymyr Vynnychenko Central Ukrainian State Pedagogical University

Abstract

The paper deals with studying trajectories of motion of individual liquid particles in a two-layer hydrodynamic system with a finite layer thickness as well as analyzing phase and group velocities of internal waves in the system. The problem is modeled for an inviscid incompressible fluid under action of the gravity and surface tension forces in a dimensionless form. Solutions of the problem are sought in the form of progressive waves using the multi-scale method. The solutions are expanded in terms of the nonlinearity coefficient. Dependence of the dispersion ratio of the wavenumber is investigated for different values of the surface tension coefficient and the ratio of the layer densities. Formulas are obtained for the group and phase velocities for internal gravity-capillary waves as well as in the limiting case for capillary waves. A comparison of the values of the phase and group velocities of internal waves for different values of the wave number is carried out. It is proved that with an increase in the wave number, the group velocity begins to outstrip the phase velocity, and their equality occurs at the minimum phase velocity. It is shown that the trajectories are ellipses in which the horizontal semi axes are larger than the vertical ones. Formulas are obtained for the semi axes of elliptic trajectories for each of the layers. The character of the change in the semi axes of elliptical trajectories is analyzed depending on the distance from the interface between two liquid layers as well as on the values of the wave number. It is proved that the semi axes of ellipses decrease unevenly with increasing distance from the boundary. The asymmetry of the particle trajectories of each of the layers is shown for the case when the thickness of the lower layer differs from the thickness of the lower layer. The study of the kinematic characteristics of the particle motion makes it possible to simulate real physical wave processes in the World Ocean. The results are also relevant for creating a theoretical basis for experiments.

Publisher

Taras Shevchenko National University of Kyiv

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3